68 research outputs found

    Are there dedicated neural mechanisms for imitation? A study of grist and mills

    Get PDF
    Are there brain regions that are specialized for the execution of imitative actions? We compared two hypotheses of imitation: the mirror neuron system (MNS) hypothesis predicts frontal and parietal engagement which is specific to imitation, while the Grist-Mills hypothesis predicts no difference in brain activation between imitative and matched non-imitative actions. Our delayed imitation fMRI paradigm included two tasks, one where correct performance was defined by a spatial rule and another where it was defined by an item-based rule. For each task, participants could learn a sequence from a video of a human hand performing the task, from a matched “Ghost” condition, or from text instructions. When participants executed actions after seeing the Hand demonstration (compared to Ghost and Text demonstrations), no activation differences occurred in frontal or parietal regions; rather, activation was localized primarily to occipital cortex. This adds to a growing body of evidence which indicates that imitation-specific responses during action execution do not occur in canonical mirror regions, contradicting the mirror neuron system hypothesis. However, activation differences did occur between action execution in the Hand and Ghost conditions outside MNS regions, which runs counter to the Grist-Mills hypothesis. We conclude that researchers should look beyond these hypotheses as well as classical MNS regions to describe the ways in which imitative actions are implemented by the brain

    Neural responses when learning spatial and object sequencing tasks via imitation

    Get PDF
    Humans often learn new things via imitation. Here we draw on studies of imitation in children to characterise the brain system(s) involved in the imitation of different sequence types using functional magnetic resonance imaging. On each trial, healthy adult participants learned one of two rule types governing the sequencing of three pictures: a motor-spatial rule (in the spatial task) or an object-based rule (in the cognitive task). Sequences were learned via one of three demonstration types: a video of a hand selecting items in the sequence using a joystick (Hand condition), a computer display highlighting each item in order (Ghost condition), or a text-based demonstration of the sequence (Text condition). Participants then used a joystick to execute the learned sequence. Patterns of activation during demonstration observation suggest specialisation for object-based imitation in inferior frontal gyrus, specialisation for spatial sequences in anterior intraparietal sulcus (IPS), and a general preference for imitation in middle IPS. Adult behavioural performance contrasted with that of children in previous studies—indicating that they experienced more difficulty with the cognitive task—while neuroimaging results support the engagement of different neural regions when solving these tasks. Further study is needed on whether children’s differential performance is related to delayed IPS maturation

    Vicarious Learning from Human Models in Monkeys

    Get PDF
    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object–reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models

    Chimpanzees (Pan troglodytes) do not develop contingent reciprocity in an experimental task

    Get PDF
    Chimpanzees provide help to unrelated individuals in a broad range of situations. The pattern of helping within pairs suggests that contingent reciprocity may have been an important mechanism in the evolution of altruism in chimpanzees. However, correlational analyses of the cumulative pattern of interactions over time do not demonstrate that helping is contingent upon previous acts of altruism, as required by the theory of reciprocal altruism. Experimental studies provide a controlled approach to examine the importance of contingency in helping interactions. In this study, we evaluated whether chimpanzees would be more likely to provide food to a social partner from their home group if their partner had previously provided food for them. The chimpanzees manipulated a barpull apparatus in which actors could deliver rewards either to themselves and their partners or only to themselves. Our findings indicate that the chimpanzees’ responses were not consistently influenced by the behavior of their partners in previous rounds. Only one of the 11 dyads that we tested demonstrated positive reciprocity. We conclude that contingent reciprocity does not spontaneously arise in experimental settings, despite the fact that patterns of behavior in the field indicate that individuals cooperate preferentially with reciprocating partners

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    ALLEVAMENTO DI BESTIAME BOVINO IN ITALIA

    Get PDF
    The research reported in this paper was partly funded by project grants PSI2011-29016-C02-01, PSI2014-51890-C2-1-P (Ministerio de EconomĂ­a y Competitividad, Spain) http://www.mineco.gob.es/ and UCM-BSCH GR3/14-940813 (Universidad Complutense de Madrid y Banco Santander Central Hispano) to F. C. A post-doctoral scholarship from Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico / FONDECYT NÂș 3140580 awarded to J.ZA. funded his salary. http://www.conicyt.cl/fondecyt. European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant SOMICS agreement n° 609819. Dr. Josep Call.Cetaceans are remarkable for exhibiting group-specific behavioral traditions or cultures in several behavioral domains (e.g., calls, behavioral tactics), and the question of whether they can be acquired socially, for example through imitative processes, remains open. Here we used a “Do as other does” paradigm to experimentally study the ability of a beluga to imitate familiar intransitive (body-oriented) actions demonstrated by a conspecific. The participant was first trained to copy three familiar behaviors on command (training phase) and then was tested for her ability to generalize the learned “Do as the other does” command to a different set of three familiar behaviors (testing phase). We found that the beluga (1) was capable of learning the copy command signal “Do what-the-other-does”; (2) exhibited high matching accuracy for trained behaviors (mean = 84% of correct performance) after making the first successful copy on command; (3) copied successfully the new set of three familiar generalization behaviors that were untrained to the copy command (range of first copy = 12 to 35 trials); and (4) deployed a high level of matching accuracy (mean = 83%) after making the first copy of an untrained behavior on command. This is the first evidence of contextual imitation of intransitive (body-oriented) movements in the beluga and adds to the reported findings on production imitation of sounds in this species and production imitation of sounds and motor actions in several cetaceans, especially dolphins and killer whales. Collectively these findings highlight the notion that cetaceans have a natural propensity at skillfully and proficiently matching the sounds and body movements demonstrated by conspecifics, a fitness-enhancing propensity in the context of cooperative hunting and anti-predatory defense tactics, and of alliance formation strategies that have been documented in these species’ natural habitats. Future work should determine if the beluga can also imitate novel motor actions.Publisher PDFPeer reviewe

    Data for: Only Domain-Specific Imitation Practice Makes Imitation Perfect

    No full text
    In order to identify the component cognitive processes underlying spatial imitation learning, we presented all participants with a pre- and post-practice spatial imitation test. Children that failed to correctly imitate during the pre-test were randomly assigned to one of four groups (3 experimental practice groups and 1 "free play" no practice group). children in the Spatial Imitation group, practiced both jointly attending, vicariously encoding and subsequently copying the observed novel spatial sequences. In the Item Imitation group, children practiced both jointly attending, vicariously encoding and copying a series of observed novel item-based sequences, rather than spatial-based sequences. In the Trial-and-Error group, children practiced encoding and recalling a series of novel spatial sequences entirely through individual (associative) learning. Children in the Free play “no practice” control group, played a touchscreen drawing game that controlled for practice time on the touch-screen and mirrored some of the same actions and responses used in the experimental conditions. Results of the difference between pre- and post-practice effects on novel spatial imitation sequences showed that only the Spatial Imitation practice group significantly improved relative to the Free Play group. Individual Spatial Trial-and-Error practice did not significantly improve spatial imitation. The effect of Item Imitation practice was intermediate. These results are inconsistent with the hypothesis that general processes alone support imitation learning and is more consistent with mosaic models that posit an additive—interaction—effect on imitation performance mediated by both specialized imitation mechanisms, as well as input from less specialized social attention or social learning mechanisms.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    • 

    corecore